Transfer of quadratic forms and of quaternion algebras over quadratic field extensions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Splitting quaternion algebras over quadratic number fields

We propose an algorithm for finding zero divisors in quaternion algebras over quadratic number fields, or equivalently, solving homogeneous quadratic equations in three variables over Q( √ d) where d is a square-free integer. The algorithm is deterministic and runs in polynomial time if one is allowed to call oracles for factoring integers and polynomials over finite fields.

متن کامل

Isotropy of Products of Quadratic Forms over Field Extensions

The isotropy of products of Pfister forms is studied. In particular, an improved lower bound on the value of their first Witt index is obtained. This result and certain of its corollaries are applied to the study of the weak isotropy index (or equivalently, the sublevel) of arbitrary quadratic forms. The relationship between this invariant and the level of the form is investigated. The problem ...

متن کامل

Applications of quadratic D-forms to generalized quadratic forms

In this paper, we study generalized quadratic forms over a division algebra with involution of the first kind in characteristic two. For this, we associate to every generalized quadratic from a quadratic form on its underlying vector space. It is shown that this form determines the isotropy behavior and the isometry class of generalized quadratic forms.

متن کامل

Unramified Quaternion Extensions of Quadratic Number Fields

The first mathematician who studied quaternion extensions (H8-extensions for short) was Dedekind [6]; he gave Q( √ (2 + √ 2)(3 + √ 6) ) as an example. The question whether given quadratic or biquadratic number fields can be embedded in a quaternion extension was extensively studied by Rosenblüth [32], Reichardt [31], Witt [36], and Damey and Martinet [5]; see Ledet [19] and the surveys [15] and...

متن کامل

Metric Lie algebras and quadratic extensions

The present paper contains a systematic study of the structure of metric Lie algebras, i.e., finite-dimensional real Lie algebras equipped with a non-degenerate invariant symmetric bilinear form. We show that any metric Lie algebra g without simple ideals has the structure of a so called balanced quadratic extension of an auxiliary Lie algebra l by an orthogonal l-module a in a canonical way. I...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Archiv der Mathematik

سال: 2018

ISSN: 0003-889X,1420-8938

DOI: 10.1007/s00013-018-1198-5